엔비디아, A100 GPU에 탑재 TF32로 AI 훈련 가속화

양대규 기자 / 기사승인 : 2020-05-24 14:40:09
  • -
  • +
  • 인쇄
TF32, 행렬연산 처리위한 새로운 연산모드 지원
▲ TF32를 통해 A100 GPU는 볼타 GPU 대비 최대 20배 향상된 AI 성능을 제공한다.[사진=엔비디아]

[IT비즈뉴스 양대규 기자] 엔비디아는 자사 A100 GPU의 중심이 되는 암페어(Ampere) 아키텍처에 추가된 새로운 연산모드인 TF32를 통해 AI 훈련 가속화를 지원한다고 밝혔다.

TF32는 AI와 특정 HPC 애플리케이션에서 핵심적으로 사용되는 텐서연산이라고도 불리는 행렬연산(matrix math) 처리를 위한 엔비디아 A100 GPU의 새로운 연산모드다.

 

TF32는 A100 GPU의 텐서 코어(Tensor Core)에서 실행되며, 볼타(Volta) GPU의 단정밀도부동소수점연산(FP32)에 비해 최대 10배 빠른 속도를 제공할 수 있다. A100에서 TF32와 구조적 희소성 기능을 결합하면 볼타 대비 최대 20배 성능을 향상할 수 있다.

한 형식의 지수 내에서 비트(bit)의 수는 개체 크기를 측정할 수 있는 범위를 결정한다. 정밀도는 기수나 소수점 뒤에 있는 부동소수점 숫자에 해당하는 가수에 사용된 bit의 수에 따라 결정된다. 좋은 형식은 균형을 이루고 있다. 정밀도를 전달하기 위해서는 너무 많은 bit를 사용하지 않고 적정한 양의 bit를 사용해 처리속도를 늦추지 않고 메모리를 차지하지 않아야 한다.

TF32는 반정밀도(FP16) 수학과 동일한 10bit 가수를 사용하며 AI 워크로드에서 요구되는 정밀도를 충분히 충족시킨다. 이와 동시에 TF32는 FP32와 동일한 8bit 지수를 사용하므로, 동일한 숫자 범위를 지원할 수 있다.

TF32는 이 조합을 통해 단정밀도수학과 특히 딥 러닝과 많은 HPC 애플리케이션에서 핵심적인 역할을 하는 대규모 곱셈 누적 연산을 충분히 대체할 수 있다. 사용자는 엔비디아 라이브러리를 사용하는 애플리케이션으로 코드 변경없이 TF32의 이점을 활용할 수 있다. TF32 텐서코어는 FP32 인풋에서 작동하며 FP32에서 결과를 도출한다. 비행렬연산에서도 FP32를 사용한다.

A100은 최대 성능을 내기위해 16bit 연산 기능이 강화돼 FP16과 BF16을 TF32의 2배 비율로 지원한다.

▲ 범위와 정확도 성능 측면에서 균형 잡힌 모습을 보여주는 TF32[자료=엔비디아]


◆TF32,대화형 AI 모델 'BERT' FP32 대비 6배 빨리 훈련
엔비디아는 뉴럴 네트워크의 핵심 연산을 가속화하는 cuDNN 라이브러리의 기본값으로 TF32를 채택했다. 아울러 AI 프레임워크를 개발하는 오픈소스 커뮤니티와 협력해 A100 GPU에서도 TF32를 기본 교육모드로 사용할 수 있도록 하고 있다.

 

개발자들은 내달부터 엔비디아 GPU 최적화 소프트웨어 허브인 엔비디아 GPU 클라우드(NGC)에서 TF32 지원 파이토치(PyTorch) 프레임워크 버전과 텐서플로우(TensorFlow) 프레임워크 버전을 사용할 수 있다. 

 

파이토치 팀의 관계자는 “머신러닝 연구원, 데이터 사이언티스트, 엔지니어는 솔루션 개발 시간이 단축되길 원한다. TF32가 파이토치에 기본으로 통합되면, 엔비디아 암페어 아키텍처 기반 GPU를 사용할 때 FP32의 정확성을 유지하면서도 코드를 바꿀 필요없이 성능을 향상시킬 수 있다”고 밝혔다.

 

반복행렬수학 연산 알고리즘인 선형 솔버(linear solver)라고 불리는 HPC 애플리케이션들도 TF32의 이점을 활용할 수 있다. 

FP32를 사용해 FP64 정밀도를 달성한 선형 솔버는 이미 30년 이상 사용됐다. 작년에 실시한 국제열핵융합실험로(ITER) 융합반응연구에서 혼합정밀법이 엔비디아 FP16 텐서 코어를 이용한 솔버들의 처리속도를 3.5배 향상시켰다는 점이 입증됐다. 

 

이 연구에 사용된 동일한 기술을 통해 서밋(Summit) 슈퍼컴퓨터는 HPL-AI 벤치마크에서 성능이 3배 향상된 된 것으로 나타났다. 엔비디아는 업계와 협업해 현재 FP32을 사용하고 있는 곳에 TF32의 적용 사례를 늘려가며 연구할 계획이다.

 

[저작권자ⓒ IT비즈뉴스. 무단전재-재배포 금지]

  • 글자크기
  • +
  • -
  • 인쇄
뉴스댓글 >

주요기사

+

많이 본 기사

마켓인사이트

+

컴퓨팅인사이트

+

스마트카

+

PHOTO NEWS